Variational Integrators for Interconnected Lagrange-Dirac Systems
نویسندگان
چکیده
Interconnected systems are an important class of mathematical models, as they allow for the construction of complex, hierarchical, multiphysics, and multiscale models by the interconnection of simpler subsystems. Lagrange–Dirac mechanical systems provide a broad category of mathematical models that are closed under interconnection, and in this paper, we develop a framework for the interconnection of discrete Lagrange–Dirac mechanical systems, with a view toward constructing geometric structure-preserving discretizations of interconnected systems. This work builds on previous work on the interconnection of continuous Lagrange–Dirac systems (Jacobs and Yoshimura in J Geom Mech 6(1):67–98, 2014) and discrete Dirac variational integrators (Leok and Ohsawa in Found Comput Math 11(5), 529–562, 2011). We test our results by simulating some of the continuous examples given in Jacobs and Yoshimura (2014).
منابع مشابه
Constructing Equivalence-preserving Dirac Variational Integrators with Forces
The dynamical motion of mechanical systems possesses underlying geometric structures, and preserving these structures in numerical integration improves the qualitative accuracy and reduces the long-time error of the simulation. For a single mechanical system, structure preservation can be achieved by adopting the variational integrator construction. This construction has been generalized to mor...
متن کاملVariational Discrete Dirac Mechanics—implicit Discrete Lagrangian and Hamiltonian Systems
We construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving implicit discrete Lagrangian and Hamiltonian systems, while incorporating discrete Dirac constraints. In particular, this yields implicit nonholonomic Lagrangia...
متن کاملInterconnection of Dirac Structures and Lagrange-Dirac Dynamical Systems
In the paper, we develop an idea of interconnection of Dirac structures and their associated LagrangeDirac dynamical systems. First, we briefly review the LagrangeDirac dynamical systems (namely, implicit Lagrangian systems) associated to induced Dirac structures. Second, we describe an idea of interconnection of Dirac structures; namely, we show how two distinct Lagrange-Dirac systems can be i...
متن کاملVariational and Geometric Structures of Discrete Dirac Mechanics
In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew’s triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides ...
متن کاملDiscrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems
We present discrete analogues of Dirac structures and the Tulczyjew’s triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Nonlinear Science
دوره 27 شماره
صفحات -
تاریخ انتشار 2017